Outline

Part 1: Data Preparation in SPSS
- Data import/entry
- Descriptive statistics
- Data visualization

Part 2: Common Data Analysis in SPSS
- Introduction to inferential statistical analysis
- What is a model/analysis?
- Independent T-test
- Independent one-way ANOVA
Introduction to Inferential Statistical Analysis

- Inferential statistics aim to make a claim about population from samples through *hypothesis testing* (*p* value)

Is there population gender difference based on the findings from the samples?

- Hypothesis testing (gives *p* value)

<table>
<thead>
<tr>
<th>Population</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>N = 10,000,000</td>
</tr>
<tr>
<td>Females</td>
<td>Gen diff = 3.5</td>
</tr>
<tr>
<td>N = 100</td>
<td>N = 100</td>
</tr>
</tbody>
</table>

Males

Females

N = 10,000,000

N = 100

Is there population gender difference based on the findings from the samples?
What is a model (or analysis)?

• Model/analysis is a tool!

 • Different models/analyses have different functions:
 - Research question: e.g., what is the group difference?
 what is the overall pattern of change?
 - Assumption: e.g., linear, independence, normality, equal variance
 - Data type: Continuous data (representing the amount),
 Categorical data (representing type)
 - …

 Build your theory!
 (by answering research questions)
Introduce Two Models (or analyses)

• Two tools:

Independent T-test & Independent one-way ANOVA

<table>
<thead>
<tr>
<th>Research question: Are there group differences?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data type</td>
</tr>
<tr>
<td>Continuous</td>
</tr>
<tr>
<td>Claim</td>
</tr>
<tr>
<td>Inferential</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Independent T-test
(Two groups comparison)
Independent T-test

- Two-groups comparison

- R.Q: Is there *population* group difference in the scores?

- Independent T-test tests *population group difference in continuous data* between *two categories* (i.e., groups)
Independent T-test

- How does the independent T-test work?
 - Sample mean difference

<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
<th>Mean difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8</td>
<td>12.4</td>
<td>5.6</td>
</tr>
</tbody>
</table>

- Hypothesis testing is conducted to see whether we can make a claim about population mean difference based on the sample mean difference.
Independent T-test

- To do hypothesis testing, the sample group difference is summarized by T test statistic:

 Conceptually, $T = \frac{\text{Group A mean} - \text{Group B mean}}{\text{Sampling error}}$

- P value is evidence that the sample group difference can be generalized to the population
 (Statistically, how likely the sample group difference (T) would occur WHEN there is no group difference in population)

- Common criteria for p value (to conclude the population group difference) $\Rightarrow p < 0.05$
To summarize…

• **Independent T-test** is used to see whether there is *population group difference* (not *sample group difference*) in *continuous data* between **two groups**.
Independent T-test

- Example based on hands-on data

- Gender (2 groups): males, females

- **R.Q:** Is there *population mean difference* in *quality of life* (*continuous data*) between *males and females* (2 groups)?
Independent T-test

- SPSS: Analyze > Compare Means > Independent-sample T Test
Independent T-test

- Results:

<table>
<thead>
<tr>
<th>Quality of life</th>
<th>F</th>
<th>Sig.</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
<th>Mean Difference</th>
<th>Std. Error Difference</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal variances assumed</td>
<td>2.490</td>
<td>.116</td>
<td>-1.738</td>
<td>198</td>
<td>.084</td>
<td>-1.079</td>
<td>.621</td>
<td>-2.303 - .145</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>-1.762</td>
<td>197.875</td>
<td>.080</td>
<td>-1.079</td>
<td>.612</td>
<td>-2.286</td>
<td>.128</td>
<td></td>
</tr>
</tbody>
</table>

Levene’s Test aims to test equal variance assumption (one of the assumptions for independent T-test)

Sig (p value) > 0.05 indicates the equal variance assumption is met
Independent T-test

- **Results:**

<table>
<thead>
<tr>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
</tr>
<tr>
<td>Quality of life</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>2.490</td>
<td>.116</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conceptually,
- $t \rightarrow$ sample group mean difference for hypothesis testing
- $\text{sig (i.e. } p\text{ value)} \rightarrow$ probability of getting the observed t value (representing sample group difference) WHEN no group difference in the population
Independent One-way ANOVA
(Comparison between three or more groups)
Independent One-way ANOVA

- Comparison between three or more groups

<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 7 5 4 11 3</td>
<td>9 8 7 13 11 10</td>
<td>13 11 15 10 17 12</td>
</tr>
</tbody>
</table>

- **R.Q:** Are there population mean differences between groups of interest?

- It tests *population mean differences* in *continuous data* between *more than three categories* *(i.e., groups)*
Independent One-way ANOVA

- Why not multiple T-tests?

Multiple t-tests lead to inflation of the Type-1 error rate

Note. Type-1 error (false positive error): error that rejects a true null hypothesis (i.e., no group difference)
Independent One-way ANOVA

• How analysis of variance (ANOVA) works?
Partitioning the total variation into between-group variation and within-group variation

Grand Mean

Between-group variation
- deviation between Grand Mean – Group Mean

Within-group variation
- deviation between Group mean – Individual score within the group
Independent One-way ANOVA

• To do hypothesis testing, the sample group differences are summarized by the F test statistic:

 Conceptually, $F = \frac{\text{Between-group variation}}{\text{Within-group variation}}$

• P value is evidence that the sample group difference can be generalized to the population ($p < 0.05$)
 (Statistically, p value tells us how likely the sample group differences (F) would occur WHEN there is no group difference in population)

• F test statistic tests whether there is at least one group difference between two groups.
Independent One-way ANOVA

- Post-hoc paired-comparisons test:
 - Post-hoc test shows which groups have difference by testing all pairs of groups individually

 \[
 \begin{array}{ccc}
 \text{pair 1} & \text{pair 2} & \text{pair 3} \\
 \text{Group A vs. Group B} & \text{Group A vs. Group C} & \text{Group B vs. Group C} \\
 \end{array}
 \]

 - *Modified T-test* is used to adjust inflated Type-1 error

 - The most common post-hoc t-test is *Tukey’s test*
Independent One-way ANOVA

To summarize…

• Independent one-way ANOVA is used to see whether there are *population group differences* (not *sample group differences*) in *continuous data* between *more than three groups*.

![Diagram showing data groups and sample versus population group differences.]
Independent One-way ANOVA

• Example based on hands-on data

- Marital status (3 groups): married, widow/separate, single

- **R.Q:** Are there *population mean differences* in quality of life *continuous data* between married, widow/separate, and single *(3 groups)*?
Independent One-way ANOVA

- SPSS: Analyze > Compare Means > One-Way ANOVA
Independent One-way ANOVA

- Results: Overall group difference (omnibus test results)

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>643.663</td>
<td>2</td>
<td>321.831</td>
<td>19.827</td>
<td>.000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>3197.732</td>
<td>197</td>
<td>16.232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3841.395</td>
<td>199</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conceptually,
- **Sum of Squares, Mean Square** → variations
- **df** → degrees of freedom
- **F** → Between-group variation/ Within-group variation
- **Sig (i.e. p value)** → probability of getting the observed F value (representing sample group differences) WHEN no group differences in the population
Independent One-way ANOVA

- Results: Which groups differ? (post hoc test results)

Post Hoc Tests

Multiple Comparisons

<table>
<thead>
<tr>
<th>(I) Marital status</th>
<th>(J) Marital status</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>married, common law</td>
<td>widow, divorce, separate</td>
<td>4.381*</td>
<td>.712</td>
<td>.000</td>
<td>2.70 - 6.06</td>
</tr>
<tr>
<td></td>
<td>single, never married</td>
<td>1.423</td>
<td>.695</td>
<td>.104</td>
<td>-.22 - 3.06</td>
</tr>
<tr>
<td>widow, divorce, separate</td>
<td>married, common law</td>
<td>-4.381*</td>
<td>.712</td>
<td>.000</td>
<td>-6.06 - -2.70</td>
</tr>
<tr>
<td></td>
<td>single, never married</td>
<td>-2.958*</td>
<td>.689</td>
<td>.000</td>
<td>-4.59 - -1.33</td>
</tr>
<tr>
<td>single, never married</td>
<td>married, common law</td>
<td>-1.423</td>
<td>.695</td>
<td>.104</td>
<td>-3.06 - .22</td>
</tr>
<tr>
<td></td>
<td>widow, divorce, separate</td>
<td>2.958*</td>
<td>.689</td>
<td>.000</td>
<td>1.33 - 4.59</td>
</tr>
</tbody>
</table>

* The mean difference is significant at the 0.05 level.
Other tools?

• Different models/analyses are applied depending on research question, data type, assumption, claim, etc.
 - Correlation
 - Paired-sample T-test
 - Repeated measure ANOVA
 - Multiple regression with continuous data
 - Logistic regression with categorical data
 - Multi-level (a.k.a., mixed model)
 - Growth curve model
 - …

→ SPSS 2 workshop!
THANK YOU!

QUESTION, COMMENT, IDEAS
FEEDBACK