NVivo: Classifications and Datasets

Winter 2016
Welcome to the Research Commons!

- Workshops and One-on-one Consultations
 - Thesis Formatting
 - Citation Management
 - SPSS
 - NVivo
- Writing groups
- R study group
- ...

Check the Website for more
Outline

• Brief review of the basics
• Case nodes
• Classifications and attributes
 – Source vs. case classifications
• Working with datasets
 – Auto coding columns and values in columns
• Matrix coding queries
• Hands-On!
• Evaluation
Basic tools

• Queries
 ➢ Word frequency
 ➢ Text search

• Nodes

• Coding
Queries

Queries provide a flexible way to gather and explore subsets of your data.

Source: QSR International
Word frequency queries: “Word Cloud”
Text search query

for what is happening to our
but it moves with weather
from a lot of rain
I said with the climate
again, with the climate change
a year or two

anyway, like and eggshell
because the weather
to learn new things
mmm Interviewee 2: because as
to hear people talk about
hehehe. And the climate
way things are going
the climate, the weather, like today
to us, but it moves with

and I think it also have
like today weather is lot chillier
most of the time hey, and
way it is going, you
the climate was for
weather has made a cycle,
when it gets really stormy here.

and, see we didn’t get enough
change, is what I keep saying
changes, I think we have to
it seems like, for me,
has made a cycle, as the
is lot chillier that it was
will continuously change for the worst.
Nodes

A node is a collection of references about a specific theme, place, person or other area of interest.

Source: QSR International

You can have pre-set ideas of what your nodes should be, or see what emerges from your data.
Nodes in NVivo
Case nodes

• Useful when entire sources contain material that relates to particular people, places or other cases.

• E.g. sources containing interviews
Case nodes
Classifications

• Classifications allow users to record descriptive information about the sources, nodes and relationships in their projects.
Source classification

• Used to store bibliographical information about sources

• NVivo provides 49 predefined bibliographical classifications
 – Newspaper Article
 – Journal Article
 – Web Page
 – Book
 – Thesis

Attributes and values

Newspaper Article

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporter</td>
<td>Benjamin Smith</td>
</tr>
<tr>
<td>Year</td>
<td>2010</td>
</tr>
<tr>
<td>Title</td>
<td>Urgent Challenges of Climate Change</td>
</tr>
</tbody>
</table>
Case classification

• Used to provide demographic details about people, places or other 'cases' in a project.

• Predefined in NVivo:
 – Person
 – Organization
Attributes and values

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>25</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
</tr>
<tr>
<td>Occupation</td>
<td>Cattle farmer</td>
</tr>
</tbody>
</table>
Working with Datasets

• A survey dataset contains structured data arranged in records (rows) and fields (columns).

– for example, data from:
 • spreadsheets
 • responses from SurveyMonkey or Qualtrics
 • social media data gathered from Facebook, LinkedIn or Twitter using NCapture.
What can I do in a dataset?

- Sort or filter the dataset based on the values in classifying columns (close-ended questions)

Classifying: Values that describe the data, e.g. in a set of survey responses, you may have classifying columns which contain the name, age or sex of the survey participants.
What can I do in a dataset?

• Annotate the text in codable columns
• Create see also links on the text in codable columns
• Code or query the text in codable columns

Codable: Textual content that you want to analyze, e.g. survey responses to open-ended questions
What else can I do in a dataset?

- Auto code to organize the data
- Organize demographic attributes for your case nodes using the classifying information in the dataset
Auto coding datasets

- Code at nodes for selected columns
- Code at nodes for each value in a column
<table>
<thead>
<tr>
<th>Respondent</th>
<th>Age</th>
<th>Sex</th>
<th>Question 1</th>
<th>Question 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anna</td>
<td>29</td>
<td>Female</td>
<td>I think there should be more car-free zones</td>
<td>Electric buses and taxis would help reduce pollution</td>
</tr>
<tr>
<td>Jack</td>
<td>31</td>
<td>Male</td>
<td>Pedestrians need to feel safe. There should be better lighting</td>
<td>We should create more green spaces</td>
</tr>
<tr>
<td>Maria</td>
<td>52</td>
<td>Female</td>
<td>Safety barriers at busy intersections</td>
<td>I don't think they should tax car parks</td>
</tr>
<tr>
<td>Peter</td>
<td>47</td>
<td>Male</td>
<td>Better education in schools about road safety</td>
<td>More street trees</td>
</tr>
</tbody>
</table>
Resulting nodes

- Question 1
- Question 2
<table>
<thead>
<tr>
<th>Respondent</th>
<th>Age</th>
<th>Sex</th>
<th>Question 1</th>
<th>Question 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anna</td>
<td>29</td>
<td>Female</td>
<td>I think there should be more car-free zones</td>
<td>Electric buses and taxis would help reduce pollution</td>
</tr>
<tr>
<td>Jack</td>
<td>31</td>
<td>Male</td>
<td>Pedestrians need to feel safe. There should be better lighting</td>
<td>We should create more green spaces</td>
</tr>
<tr>
<td>Maria</td>
<td>52</td>
<td>Female</td>
<td>Safety barriers at busy intersections</td>
<td>I don't think they should tax car parks</td>
</tr>
<tr>
<td>Peter</td>
<td>47</td>
<td>Male</td>
<td>Better education in schools about road safety</td>
<td>More street trees</td>
</tr>
</tbody>
</table>
Resulting case nodes

Anna
Jack
Maria
Peter
Using demographics from dataset

<table>
<thead>
<tr>
<th>Respondent</th>
<th>Age</th>
<th>Sex</th>
<th>Question 1</th>
<th>Question 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anna</td>
<td>29</td>
<td>Female</td>
<td>I think there should be more car-free zones</td>
<td>Electric buses and taxis would help reduce pollution</td>
</tr>
<tr>
<td>Jack</td>
<td>31</td>
<td>Male</td>
<td>Pedestrians need to feel safe. There should be better lighting</td>
<td>We should create more green spaces</td>
</tr>
<tr>
<td>Maria</td>
<td>52</td>
<td>Female</td>
<td>Safety barriers at busy intersections</td>
<td>I don’t think they should tax car parks</td>
</tr>
<tr>
<td>Peter</td>
<td>47</td>
<td>Male</td>
<td>Better education in schools about road safety</td>
<td>More street trees</td>
</tr>
</tbody>
</table>
Demographics from dataset

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anna</td>
<td>29</td>
<td>Female</td>
</tr>
<tr>
<td>Jack</td>
<td>31</td>
<td>Male</td>
</tr>
<tr>
<td>Maria</td>
<td>52</td>
<td>Female</td>
</tr>
<tr>
<td>Peter</td>
<td>47</td>
<td>Male</td>
</tr>
</tbody>
</table>
Matrix coding queries

• Find a combination of items (usually nodes or cases and attributes) and display the results in a table.

• Ask a wide range of questions about patterns in the data and gain access to the content that shows those patterns.
Cases vs. Thematic nodes

- Case nodes
- Thematic nodes

→ Matrix coding
Case vs thematic nodes

<table>
<thead>
<tr>
<th></th>
<th>A : Change</th>
<th>B : Fishing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 : Barbara</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2 : Charles</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>3 : Dorothy</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>4 : Margaret</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>5 : Robert</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>6 : Susan</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>7 : Thomas</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>8 : William</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>
Thematic nodes vs attributes

- Thematic nodes
- Attributes

Matrix coding
Thematic nodes vs attributes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Agriculture</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2: Fishing or aquaculture</td>
<td>7</td>
<td>27</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>3: Jobs and cost of living</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>4: Tourism</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5: Ecosystem services</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Need Help?

Resources & Consultations
researchcommons.library.ubc.ca

Workshops
elred.library.ubc.ca/libs

Email
[research/commons@ubc.ca](mailto:research.commons@ubc.ca)

@UBCRCommons

UBCResearchCommons

Guided practice

Now....

Hands On!
Wrap-Up

• Evaluation form: (Please complete!)
 researchcommons.library.ubc.ca

Thanks for coming!